Extract Cell Type Composition of UCSC Cell Browser Datasets.
ExtractCBComposition.Rd
Extract Cell Type Composition of UCSC Cell Browser Datasets.
Usage
ExtractCBComposition(
json.folder = NULL,
sample.df = NULL,
all.samples.df = NULL,
collection = NULL,
sub.collection = NULL,
organ = NULL,
disease = NULL,
organism = NULL,
project = NULL,
fuzzy.match = TRUE,
cell.num = NULL
)
Arguments
- json.folder
Folder contains datasets json files, same as
json.folder
ofShowCBDatasets
. Default: NULL (current working directory).- sample.df
Dataframe contains used datasets. Default: NULL.
- all.samples.df
Dataframe contains all samples metadata, obtained with
ShowCBDatasets
. Default: NULL.sample.df
andall.samples.df
cannot be both NULL.- collection
The collection of the datasets, corresponds to
shortLabel
column ofall.samples.df
, obtain available values withStatDBAttribute
. Default: NULL (without filtering).- sub.collection
The sub-collection of the datasets, corresponds to
subLabel
column ofall.samples.df
, obtain available values withStatDBAttribute
. Default: NULL (without filtering).- organ
The organ of the datasets, corresponds to
body_parts
column ofall.samples.df
, obtain available values withStatDBAttribute
. Default: NULL (without filtering).- disease
The disease of the datasets, corresponds to
diseases
column ofall.samples.df
, obtain available values withStatDBAttribute
. Default: NULL (without filtering).- organism
The specie of the datasets, corresponds to
organisms
column ofall.samples.df
, obtain available values withStatDBAttribute
. Default: NULL (without filtering).- project
The project of the datasets, corresponds to
projects
column ofall.samples.df
, obtain available values withStatDBAttribute
. Default: NULL (without filtering).- fuzzy.match
Logical value, whether to perform fuzzy match with provided attribute values. Default: TRUE.
- cell.num
Cell number filter. If NULL, no filter; if one value, lower filter; if two values, low and high filter. Deault: NULL.
Examples
# # lazy mode, load datasets json files locally
# ucsc.cb.samples = ShowCBDatasets(lazy = TRUE, json.folder = NULL, update = FALSE)
# # cell number is between 1000 and 2000
# hbb.sample.df = ExtractCBDatasets(all.samples.df = ucsc.cb.samples, organ = c("brain", "blood"),
# organism = "Human (H. sapiens)", cell.num = c(1000,2000))
# hbb.sample.ct = ExtractCBComposition(json.folder = NULL, sample.df = hbb.sample.df)