Count QC plot.

CountQC(
  deobj,
  group.key = NULL,
  type = c("saturation", "cpm"),
  min.count = 0,
  ndepth = 10,
  cat.colors = NULL,
  ...
)

Arguments

deobj

Object created by DESeq2 or edgeR.

group.key

Sample group information. When set NULL, select first column of metadata. Default: NULL.

type

QC plot type, chosen from saturation and cpm. Default: saturation.

min.count

A feature is considered to be detected if the corresponding number of read counts is > min.count. By default, min.count = 0. . This parameter is used by type "saturation".

ndepth

Number of different sequencing depths to be simulated and plotted apart from the real depth. Default: 10. This parameter is only used by type "saturation".

cat.colors

Color used for different CPM Threshold groups or samples. Default: NULL (auto-selection).

...

Parameters for dat.

Value

Count QC plot

Examples

library(DESeq2) library(DEbPeak) count.file <- system.file("extdata", "snon_count.txt", package = "DEbPeak") meta.file <- system.file("extdata", "snon_meta.txt", package = "DEbPeak") count.matrix <- read.table(file = count.file, header = TRUE, sep = "\t") meta.info <- read.table(file = meta.file, header = TRUE) dds <- DESeq2::DESeqDataSetFromMatrix(countData = count.matrix, colData = meta.info, design = ~condition)
#> Warning: some variables in design formula are characters, converting to factors
CountQC(deobj = dds, group.key = "condition", type = "cpm")
#> Differential expression analysis with DESeq2!
#> [1] "Warning: 25096 features with 0 counts in all samples are to be removed for this analysis." #> [1] "Count distributions are to be computed for:" #> [1] "KO1" "KO2" "KO3" "KO4" "KO5" "KO6" "WT1" "WT2" "WT3" "WT4" "WT5" "WT6"
CountQC(deobj = dds, group.key = "condition", type = "saturation")
#> Differential expression analysis with DESeq2!