GO Enrichment on Integrated Results.

InteFE(
  inte.res,
  fe.key,
  inte.type = c("DEbPeak", "PeakbPeak", "DEbDE"),
  out.folder = NULL,
  gene.type = c("ENSEMBL", "ENTREZID", "SYMBOL"),
  go.type = c("ALL", "BP", "MF", "CC"),
  enrich.pvalue = 0.05,
  enrich.qvalue = 0.05,
  species = c("Human", "Mouse", "Rat", "Fly", "Arabidopsis", "Yeast", "Zebrafish",
    "Worm", "Bovine", "Pig", "Chicken", "Rhesus", "Canine", "Xenopus", "Anopheles",
    "Chimp", "E coli strain Sakai", "Myxococcus xanthus DK 1622"),
  padj.method = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr",
    "none"),
  show.term = 15,
  str.width = 30,
  plot.resolution = 300,
  plot.width = 7,
  plot.height = 9,
  save = TRUE
)

Arguments

inte.res

Integration results, can be output of DEbPeak, PeakbPeak, DEbDE.

fe.key

The key type of integrated results ("Type" column of inte.res) to perform functional enrichment.

inte.type

The integration type, choose from "DEbDE", "PeakbPeak", "DEbPeak". Default: "DEbPeak".

out.folder

Folder to save enrichment results. Default: wording directory.

gene.type

Gene name type (if inte.res is from DEbPeak, this should be ENTREZID; if inte.res is from PeakbPeak, this should be Gene name type of P1_Gene; if inte.res is from DEbDE, this should be Gene name type of DE1_Gene). Chosen from ENSEMBL, ENTREZID,SYMBOL. Default: ENSEMBL.

go.type

GO enrichment type, chosen from ALL, BP, MF, CC. Default: ALL.

enrich.pvalue

Cutoff value of pvalue. Default: 0.05.

enrich.qvalue

Cutoff value of qvalue. Default: 0.05.

species

Species used, chosen from "Human","Mouse","Rat","Fly","Arabidopsis","Yeast","Zebrafish","Worm","Bovine","Pig","Chicken","Rhesus", "Canine","Xenopus","Anopheles","Chimp","E coli strain Sakai","Myxococcus xanthus DK 1622". Default: "Human".

padj.method

One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". Default: BH.

show.term

Number of enrichment term to show. Default: 15.

str.width

Length of enrichment term in plot. Default: 30.

plot.resolution

Resolution of plot. Default: 300.

plot.width

The width of plot. Default: 7.

plot.height

The height of plot. Default: 9.

save

Logical value, whether to save all results. Default: TRUE.

Value

If save is TRUE, return NULL (all results are in out.folder), else retutn result dataframe.

Examples

library(DEbPeak) #### RNA-seq and RNA-seq rna.diff.file <- system.file("extdata", "RA_RNA_diff.txt", package = "DEbPeak") de1.res <- read.table(file = rna.diff.file, header = TRUE, sep = "\t") de2.res <- read.table(file = rna.diff.file, header = TRUE, sep = "\t") # use same file as example de.de <- DEbDE(de1.res = de1.res, de2.res = de2.res, de1.l2fc.threshold = 0.5, de2.l2fc.threshold = 1)
#> Differential expression analysis with DESeq2!
#> Differential expression analysis with DESeq2!
de.de.fe <- InteFE( inte.res = de.de, fe.key = "Down_Down", inte.type = "DEbDE", gene.type = "SYMBOL", go.type = "BP", species = "Mouse", save = F )
#> Convert SYMBOL to ENTREZID!
#> 'select()' returned 1:1 mapping between keys and columns
#> Warning: 5.76% of input gene IDs are fail to map...
#> conduct BP GO enrichment analysis.
#> wrong orderBy parameter; set to default `orderBy = "x"`
#> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale.
#### peak-related and peak-related # ChIP-seq data chip.file <- system.file("extdata", "debchip_peaks.bed", package = "DEbPeak") chip.df <- GetConsensusPeak(peak.file = chip.file) chip.anno <- AnnoPeak( peak.df = chip.df, species = "Mouse", seq.style = "UCSC", up.dist = 20000, down.dist = 20000 )
#> >> preparing features information... 2023-07-02 17时16分48秒 #> >> identifying nearest features... 2023-07-02 17时16分48秒 #> >> calculating distance from peak to TSS... 2023-07-02 17时16分49秒 #> >> assigning genomic annotation... 2023-07-02 17时16分49秒 #> >> adding gene annotation... 2023-07-02 17时16分50秒
#> 'select()' returned 1:many mapping between keys and columns
#> >> assigning chromosome lengths 2023-07-02 17时16分50秒 #> >> done... 2023-07-02 17时16分50秒
#> Warning: Removed 6 rows containing non-finite values (`stat_count()`).
# ATAC-seq data atac.file <- system.file("extdata", "debatac_peaks.bed", package = "DEbPeak") atac.df <- GetConsensusPeak(peak.file = atac.file) atac.anno <- AnnoPeak( peak.df = atac.df, species = "Mouse", seq.style = "UCSC", up.dist = 20000, down.dist = 20000 )
#> >> preparing features information... 2023-07-02 17时16分52秒 #> >> identifying nearest features... 2023-07-02 17时16分52秒 #> >> calculating distance from peak to TSS... 2023-07-02 17时16分52秒 #> >> assigning genomic annotation... 2023-07-02 17时16分52秒 #> >> adding gene annotation... 2023-07-02 17时16分54秒
#> 'select()' returned 1:many mapping between keys and columns
#> >> assigning chromosome lengths 2023-07-02 17时16分54秒 #> >> done... 2023-07-02 17时16分54秒
#> Warning: Removed 23 rows containing non-finite values (`stat_count()`).
# integrate chip.atac <- PeakbPeak(peak1.res = chip.anno$df, peak2.res = atac.anno$df, peak.mode = "consensus", peak.anno.key = "Promoter") # functional enrichment chip.atac.fe <- InteFE( inte.res = chip.atac, fe.key = "Common", inte.type = "PeakbPeak", gene.type = "SYMBOL", go.type = "BP", species = "Mouse", save = FALSE )
#> Convert SYMBOL to ENTREZID!
#> 'select()' returned 1:1 mapping between keys and columns
#> Warning: 0.61% of input gene IDs are fail to map...
#> conduct BP GO enrichment analysis.
#> wrong orderBy parameter; set to default `orderBy = "x"`
#> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale.
#### RNA-seq and peak-related library(DESeq2) # ChIP-Seq data peak.file <- system.file("extdata", "debchip_peaks.bed", package = "DEbPeak") peak.df <- GetConsensusPeak(peak.file = peak.file) peak.profile <- PeakProfile(peak.df, species = "Mouse", by = "gene", region.type = "body", nbin = 800)
#> >> preparing promoter regions... 2023-07-02 17时17分06秒 #> >> preparing tag matrix... 2023-07-02 17时17分06秒 #> >> preparing start_site regions by ... 2023-07-02 17时17分06秒 #> >> preparing tag matrix... 2023-07-02 17时17分06秒 #> >> generating figure... 2023-07-02 17时17分15秒
#> >> done... 2023-07-02 17时17分15秒
#> >> binning method is used...2023-07-02 17时17分15秒 #> >> preparing start_site regions by gene... 2023-07-02 17时17分15秒 #> >> preparing tag matrix by binning... 2023-07-02 17时17分15秒 #> >> Running bootstrapping for tag matrix... 2023-07-02 17时17分23秒 #> >> binning method is used...2023-07-02 17时17分24秒 #> >> preparing body regions by gene... 2023-07-02 17时17分24秒 #> >> preparing tag matrix by binning... 2023-07-02 17时17分24秒 #> >> preparing matrix with extension from (TSS-20%)~(TTS+20%)... 2023-07-02 17时17分24秒 #> >> 1 peaks(0.1536098%), having lengths smaller than 800bp, are filtered... 2023-07-02 17时17分27秒 #> >> Running bootstrapping for tag matrix... 2023-07-02 17时18分08秒
peak.anno <- AnnoPeak( peak.df = peak.df, species = "Mouse", seq.style = "UCSC", up.dist = 20000, down.dist = 20000 )
#> >> preparing features information... 2023-07-02 17时18分09秒 #> >> identifying nearest features... 2023-07-02 17时18分09秒 #> >> calculating distance from peak to TSS... 2023-07-02 17时18分09秒 #> >> assigning genomic annotation... 2023-07-02 17时18分09秒 #> >> adding gene annotation... 2023-07-02 17时18分12秒
#> 'select()' returned 1:many mapping between keys and columns
#> >> assigning chromosome lengths 2023-07-02 17时18分12秒 #> >> done... 2023-07-02 17时18分12秒
#> Warning: Removed 6 rows containing non-finite values (`stat_count()`).
# RNA-Seq data count.file <- system.file("extdata", "debchip_count.txt", package = "DEbPeak") meta.file <- system.file("extdata", "debchip_meta.txt", package = "DEbPeak") count.matrix <- read.table(file = count.file, header = TRUE, sep = "\t") meta.info <- read.table(file = meta.file, header = TRUE) # create DESeqDataSet object dds <- DESeq2::DESeqDataSetFromMatrix( countData = count.matrix, colData = meta.info, design = ~condition )
#> Warning: some variables in design formula are characters, converting to factors
# set control level dds$condition <- relevel(dds$condition, ref = "NF") # conduct differential expressed genes analysis dds <- DESeq(dds)
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
# extract results dds.results <- results(dds, contrast = c("condition", "RX", "NF")) dds.results.ordered <- dds.results[order(dds.results$log2FoldChange, decreasing = TRUE), ] # Integrated with RNA-Seq debchip.res <- DEbPeak( de.res = dds.results.ordered, peak.res = peak.anno[["df"]], peak.anno.key = "Promoter", merge.key = "SYMBOL" )
#> Differential expression analysis with DESeq2!
# functional enrichment on UPbPeak genes upbpeak.fe.results <- InteFE( inte.res = debchip.res, fe.key = "UPbPeak", inte.type = "DEbPeak", gene.type = "ENTREZID", species = "Mouse", save = FALSE )
#> conduct ALL GO enrichment analysis on: UPbPeak
#> wrong orderBy parameter; set to default `orderBy = "x"`
#> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale.
#> wrong orderBy parameter; set to default `orderBy = "x"`
#> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale.
#> wrong orderBy parameter; set to default `orderBy = "x"`
#> Scale for y is already present. #> Adding another scale for y, which will replace the existing scale.