PCA.Rd
Calculate PCA.
PCA( deobj, var.genes = NULL, remove.sample = NULL, transform.method = c("rlog", "vst", "ntd") )
deobj | Object created by DESeq2 or edgeR. |
---|---|
var.genes | Select genes with larger variance for PCA analysis. Default value is NULL, using all genes. |
remove.sample | Sample(s) to remove. Default: NULL. |
transform.method | Data transformation methods, chosen from rlog, vst and ntd. Default: rlog. |
List suitable for PCAtools.
library(DESeq2) library(DEbPeak) count.file <- system.file("extdata", "snon_count.txt", package = "DEbPeak") meta.file <- system.file("extdata", "snon_meta.txt", package = "DEbPeak") count.matrix <- read.table(file = count.file, header = TRUE, sep = "\t") meta.info <- read.table(file = meta.file, header = TRUE) dds <- DESeq2::DESeqDataSetFromMatrix(countData = count.matrix, colData = meta.info, design = ~condition)#> Warning: some variables in design formula are characters, converting to factorskeep.genes <- rowSums(DESeq2::counts(dds, normalized = FALSE)) >= 10 dds <- dds[keep.genes, ] pca_res <- PCA(deobj = dds, transform.method = "rlog")#>#>