PlotDEbPeak.Rd
Create Integrated Summary Plot.
PlotDEbPeak( de.peak, peak.type = c("ChIP", "ATAC", "Peak"), peak.mode = c("consensus", "diff"), gene.col = c("geneId", "ENSEMBL", "SYMBOL"), ... )
de.peak | Dataframe contains integrated results. |
---|---|
peak.type | The source of peaks, chosen from ATAC, ChIP and Peak (ChIP and ATAC). Default: ChIP. |
peak.mode | The source of peak results, choose from consensus (peak annotation) and diff (differential expression analysis). Default: consensus. |
gene.col | Column of |
... | Parameters for |
A ggplot2 object.
library(DEbPeak) library(DESeq2) # ChIP-Seq data peak.file <- system.file("extdata", "debchip_peaks.bed", package = "DEbPeak") peak.df <- GetConsensusPeak(peak.file = peak.file) peak.profile <- PeakProfile(peak.df, species = "Mouse", by = "gene", region.type = "body", nbin = 800)#> >> preparing promoter regions... 2023-07-02 17时23分15秒 #> >> preparing tag matrix... 2023-07-02 17时23分15秒 #> >> preparing start_site regions by ... 2023-07-02 17时23分15秒 #> >> preparing tag matrix... 2023-07-02 17时23分15秒 #> >> generating figure... 2023-07-02 17时23分22秒#> >> done... 2023-07-02 17时23分22秒#> >> binning method is used...2023-07-02 17时23分22秒 #> >> preparing start_site regions by gene... 2023-07-02 17时23分22秒 #> >> preparing tag matrix by binning... 2023-07-02 17时23分22秒 #> >> Running bootstrapping for tag matrix... 2023-07-02 17时23分30秒 #> >> binning method is used...2023-07-02 17时23分31秒 #> >> preparing body regions by gene... 2023-07-02 17时23分31秒 #> >> preparing tag matrix by binning... 2023-07-02 17时23分31秒 #> >> preparing matrix with extension from (TSS-20%)~(TTS+20%)... 2023-07-02 17时23分31秒 #> >> 1 peaks(0.1536098%), having lengths smaller than 800bp, are filtered... 2023-07-02 17时23分34秒 #> >> Running bootstrapping for tag matrix... 2023-07-02 17时24分14秒peak.anno <- AnnoPeak( peak.df = peak.df, species = "Mouse", seq.style = "UCSC", up.dist = 20000, down.dist = 20000 )#> >> preparing features information... 2023-07-02 17时24分15秒 #> >> identifying nearest features... 2023-07-02 17时24分15秒 #> >> calculating distance from peak to TSS... 2023-07-02 17时24分15秒 #> >> assigning genomic annotation... 2023-07-02 17时24分15秒 #> >> adding gene annotation... 2023-07-02 17时24分18秒#>#> >> assigning chromosome lengths 2023-07-02 17时24分18秒 #> >> done... 2023-07-02 17时24分18秒#> Warning: Removed 6 rows containing non-finite values (`stat_count()`).# RNA-Seq data count.file <- system.file("extdata", "debchip_count.txt", package = "DEbPeak") meta.file <- system.file("extdata", "debchip_meta.txt", package = "DEbPeak") count.matrix <- read.table(file = count.file, header = TRUE, sep = "\t") meta.info <- read.table(file = meta.file, header = TRUE) # create DESeqDataSet object dds <- DESeq2::DESeqDataSetFromMatrix( countData = count.matrix, colData = meta.info, design = ~condition )#> Warning: some variables in design formula are characters, converting to factors# set control level dds$condition <- relevel(dds$condition, ref = "NF") # conduct differential expressed genes analysis dds <- DESeq(dds)#>#>#>#>#>#># extract results dds.results <- results(dds, contrast = c("condition", "RX", "NF")) dds.results.ordered <- dds.results[order(dds.results$log2FoldChange, decreasing = TRUE), ] # Integrated with RNA-Seq debchip.res <- DEbPeak( de.res = dds.results.ordered, peak.res = peak.anno[["df"]], peak.anno.key = "Promoter", merge.key = "SYMBOL" )#># DE and ChIP venn plot debchip.plot <- PlotDEbPeak( de.peak = debchip.res, peak.type = "ChIP", gene.col = "SYMBOL", show_percentage = FALSE )#> Warning: 条件的长度大于一,因此只能用其第一元素#> Warning: 条件的长度大于一,因此只能用其第一元素